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Abstract

We propose a dynamic model to analyze the formation of scientific collaboration networks.
In this model, individuals continuously take decisions concerning the continuation of existing
collaboration links and the formation of new ones with other researchers through a link formation
game. Once the network has been constituted, ideas arrive from outside to every node at
a constant rate and agents (can) require the collaboration of one of the previously selected
coauthors to publish them. Agents are heterogeneous —they have different levels of productivity,
and they have a limited processing capability —so congestion can arise if a researcher receives
a sufficiently high amount of collaboration requests. As a consequence, the decisions about the
link formation trade off the rewards (or costs) from collaborating with more (or less) productive
agents against the costs (or rewards) derived from more (or less) congested co-authors.

Focusing on the role of heterogeneity among agents’ productivity and congestion problems
derived from their limited processing capability we show how self-interested researchers can
organize themselves forming the kind of network topologies observed in reality.
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1 Introduction

Social networks underlie many economic and social activities up to the point that outcomes cannot
be understood without taking into account the features of the specific network structure. Examples
and references are numerous®. But one of the frameworks in which the key role of a social network is
more evident is scientific production. In academics the association with a group of able colleagues to
exchange information is a strong advantage in order to discover errors and discern the correct ways
to solve a problem. This unquestionable significance of networks in understanding scientific activity
is one of the reasons that explain the extensive empirical work on this field2. But there is another
reason: it is relatively easy to represent and then obtain network statistics form this collaboration
patterns through a direct consequence of them: coauthorship networks. In such a network a link
between two nodes (researchers) exists whenever there is some coauthored paper among the two.

Whatever it is the reason, the number of empirical studies of coauthorship networks is large.
Newman (2004), Newman (2001a) and Newman (2001b) analyze the defining statistics of coau-
thorship networks in Biology, Physics and Mathematics. Laband and Tollison (2000) focus on the
importance of informal collaboration relationships in the comparison between networks in Economics
and Biology. Hudson (1996) looks for the reasons of the increase in the number of coauthors per
paper in Economics. But the empirical work that most clearly shows these patterns of collaboration
is Goyal, Van der Leij and Moraga (06) (GVM from now on). This work is an excellent basis for
having a detailed image of the features of actual coauthorship networks?.

In spite of the great variety of empirical studies, there is a lack of foundational theoretical models
to analyze how the decisions of individuals contribute to the formation of scientific collaboration
networks. To the best of our knowledge, chapter 4 in Van der Leij (06) is the only attempt to
compensate this deficiency. Here, we propose a different model that chases the same aim.

1.1 Characteristics of coauthorship networks

Before introducing the model, let us describe some of the key features of scientific collaboration
networks. These are a type of social network. As such, they have some important properties.

One of the most surprising ones, is the small average distance (measured by the shortest path
length) between pairs of nodes. This stylized fact is captured in the famous ”six degrees of separa-
tion” of John Gaure’s play*. Scientific collaboration networks are not an exception to this fact as
GVM shows. The average distance in the Economics coauthorship network they analyzed was 9.47

LCalvé-Armengol and Jackson (2004) on learning about job openings through contacts or Kranton and Minehart
(2001) on buyer-seller networks are only two examples

2Albert and Barabési (2002) offers a survey of empirical studies on networks

3 Altough this empirical work refers to the world of Economics, when analyzing the characteristics of co-authorship
networks in other fields we will show that most of the features are common

4Stanley Milgram (1967) pioneered the study of path length through a clever experiment where people had to send
a letter to another person who was not directly known to them. The diameters of a variety of networks have been
measured varying from purely social networks, to co-authorship networks, to parts of the internet and world wide
web. See Albert and Barabdsi (2002) for an illuminating account.



with a total population of 33,027 nodes. This stylized fact extends to other fields. Newman (2004)
shows that the average distances are 4.6 in Biology, 5.9 in Physics and 7.6 in Mathematics.

Another interesting feature of social networks is that the degree-distribution of the nodes tends
to exhibit "fat tails”. In particular, GVM found that the 20% of most-linked authors account for
about 60% of all the links. This evidence shows that the distribution of links in the population
of economists is very unequal. Newman (2004) shows that such a feature can also be extended
to coauthorship networks in the fields he studied (Biology, Physics and Mathematics). In each
case the distribution is fat tailed, with a small fraction of scientists having a very large number of
collaborators.

Focusing on the best-connected researchers both empirical papers can go one step ahead. GVM
is able to show that these individuals collaborated extensively and most of their coauthors did not
collaborate with each other. Moreover, they also observe that these individuals are essential in
maintaining the connectivity of the network. On the other hand, Newman (2004) found that, in
the networks studied there, most of the connections (64%) of an individual’s shortest path to other
researchers pass through the best-connected of their collaborators, and most of the remainders pass
through the next-best connected.

These results leads to GVM to conclude that: ”the world of Economics is spanned by inter-
linked stars” (in essence, an inter-linked star is a network in which some nodes connected among
them accumulate a lot of links with other nodes who are not connected among themselves). Despite
there is no such a strong conclusion referred to coauthorship networks in other fields, the similarity in
the results showed above suggests a similar pattern in Biology, Physics and Mathematics. Moreover,
GVM analyzes the evolution over the last thirty years and it is able to conclude that such a structure
is stable over time.

1.2 Preview of the model and results

In this model we show that the effects of two simple driving forces can explain the formation of
scientific collaboration networks with an interlinked star topology. These two forces are caused by the
heterogeneity among researchers and their limited processing capability. To be specific, we propose
a dynamic model in which individuals periodically make decisions concerning the continuation of
existing collaboration links and the formation of new ones with other researchers through a link
formation game. Once the network has been constituted, ideas arrive from outside of the network
to every node at a constant rate and agents (can) require the collaboration of one of the previously
selected coauthors to publish them. As commented above, agents are heterogeneous —they have
different levels of productivity, and they have a limited processing capability —so congestion can
arise if a researcher receives a sufficiently high amount of collaboration requests. In consequence,
the decisions about the link formation trade off the rewards (or costs) from collaborating with more
(or less) productive agents against the costs (or rewards) derived from more (or less) congested
coauthors.

We assume that the process reaches a Steady State and we characterize it. Then, we investigate



which kind of network topologies can be sustained in Steady State. We first show several results
that narrow the set of potential equilibrium networks. In particular, these results show the tendency
to accumulate links towards the best players (high productivity) until the point in which they get
saturated. Moreover, we show that this can happen with almost-homogeneous agents. Therefore,
arbitrarily small differences among agents’ productivity can generate big differences in the Steady
State agents’ utility level. But we can go one step further in the simplification of the set of potential
Steady State networks, and identify a single topology which constitutes the unique equilibrium
network for a certain parameter’s range. This topology essentially coincides with the real scientific
collaboration network identified in the empirical studies mentioned above. Thus, our model naturally

reproduces the scientific collaboration patterns observed in reality.

1.3 Literature Review

Theoretical social network formation models can be classified into two groups. On one hand, we
have the physics-based modelling of society which treats agents as though they were just so much
insensate matter (or rather, appearing perhaps to do so). That is, agents are non-strategic. This
set has its origins in the random graph literature and has examples in the sociology literature
and recently in the computer science and statistical physics literatures. References of this kind of
models are abundant® but we will focus on two of them. Jackson and Rogers (06) proposes a nice,
simple and general model of network formation. Authors combine random meeting and network-
based meeting in a natural way and analyze how important are these two forces in determining the
formation of different kinds of networks (scientific collaboration structures are one of them). The
second model we want to emphasize presents a model that shares some features with the one we
present here. Arenas et al (03) proposes a stylized model of a problem-solving organization —whose
internal communication structure is given by a network— that can suffer congestion. Authors develop
a design problem to determine which kind of network architectures optimizes performance for any
given problem arrival rate. Contrarily to our model, network is fixed and players are non strategic.

Our work belongs to the other group of models. In this second set, models examine strategic
formation of networks and use game theoretic tools. That is, there is no exogenous prescription of
how the network is formed but there is a definition of the rules of the game agents have to play to
form the network (See Jackson (2004) for a survey of this type of models). As introduced above,
the work that more closely relates to our model is chapter 4 in Van der Leij (06). This author also
tries to develop a theoretical model to explain the empirical regularities of research collaboration
networks. In both models, heterogeneity across researchers plays a key role in explaining the results
but contrarily to our paper, Van der Leij constructs a static model in which the link formation costs
and the specific academic rewards scheme affect the equilibrium network topologies. Our model is
dynamic and the possibility of congestion is the key factor (joint with agents’ heterogeneity) for

obtaining the results.

5See Newman (2003) for a survey. Some examples are Watts (1999), Cooper and Frieze (2003) or Price (1976).



2 General setting

Let N be the set of nodes, interpreted as researchers, with n = |N| and let ¢ and j be typical
members of this set. We assume that n is finite and arbitrarily large. Networks are modeled as
directed graphs. A directed graph on N is an NV X N matrix g where entry g;; indicates whether a
directed link exists from node 7 to node j; g;; = 1 indicates the existence of such a directed link and
gij = 0 indicates the absence of this directed link. Notice that we do not impose any specific value
for g;;; in particular, it is possible to have g;; = 1 (see interpretation below). For any node i € N, let
Ni(g9) ={j € N : gj; = 1} be the set of players that have a link towards i and 7;(g) = |N;(g)| denote
the in-degree of 7. On the other hand, let M;(g) = {j € N : gi; = 1} be the set of destinations of
the links of ¢ and p,;(g) = |M;(g)| denote the out-degree of i. Notice that ,(g) and u,;(g) has to be
natural numbers. We impose that p;(g) > 1.°

The object of the agents of this model is to publish papers. This is their only source of utility.
Specifically, a publication reports one unit of utility which will be equally split among all its coau-
thors. The starting point of a publication is an idea. At each point in time, modelled continuously,
each researcher receives ideas from out of the network at an independent positive rate p. These ideas
are open, in the sense that they need to be processed to become a publication. Immediately after
receiving these open ideas, agents will send them to some previously selected destination (may be
themselves). Here it is where the network plays its role, because a researcher i can only send her
open ideas to some agent j € M;(g) (i € M;(g), i.e. g;; = 1, means that agent ¢ retains (part of)
her own open ideas). We assume that all agents in M;(g) have exactly the same probability of being
selected as destination of a particular open idea obtained by . The node chosen as destination will
be the researcher in charge of starting the publication process of this idea.

But at any point in time, several open ideas may "wait” to be processed by certain node (as in a
queue) because we assume that researchers have a limited processing capability. Specifically, nodes
process open ideas at a constant rate per instant of time, which we normalize to unity. Therefore,
if a researcher receives a sufficiently high amount of collaboration requests (links), queues will be
formed. Given this possibility, we must provide agents with some decision rule to select the open
idea they will process from their stock. We will take the simplest one, that is, all open ideas in a
queue have the same probability of being selected. Researchers also have a limited storage capability.
In particular, each agent forgets an open idea with probability ¢ at each point in time. For this
reason, not all open ideas received by a node will be finally processed.

Once an open idea is chosen to be processed two things can happen: either it is published or
it gets lost forever. Therefore, in this setting a publication can have at most two coauthors: the
researcher who initially gets the open idea from out of the network and the destination of this open
idea (notice that these two nodes can coincide). When an open idea is processed, the probability of
being published by the coauthors (author) will depend on their (her) amount of talent. Let h be the
vector of talent endowments and h; be the i-th element of this vector interpreted as the agent i’s

amount of talent. We assume that h; is exogenous, randomly generated following the probabilities

Swhen #j # 4 such that gij = 1, then g;; must be necessarily 1. When 3j # i such that g;; = 1, g;; can also be 1.



described by any continuous distribution function” and that h; > 0 for all i € N. Vector h is fixed
along the whole game. The relationship between talents and publication probability is determined
by f(-). This is a strictly increasing probability function, holding f(0) = 0. This implies that the
higher it is the amount of talent of a researcher/node the higher it is the probability of publishing
the processed ideas. So, f(h; + h;) is the probability of publishing a particular idea processed by
i (or j) and previously sent by j (or 7). Notice that h; can also be interpreted as the agent i’s
productivity.

Therefore, at any point in time, agents are characterized by two defining features: an endogenous
one, the size of their queue of open ideas waiting to be processed and an exogenous one, their amount
of talent.

2.1 Network formation game and timing

At the beginning of any date, collaboration links are configured through the following network-
formation game: all players ¢ € N simultaneously announce the direct and directed links they wish
to have either as origin or as destination. Formally, S; = {0,1}?>"~! is i’s set of pure strategies.
Let 55 = (i1, Skpy s Stg oo Sty Shis +o0s 8413 Siq 130> 5;) € Si. Then, si; = 1 if and only if player
i wants to set up a directed link from i to j (and thus s;; = 0, otherwise). As commented before
si; = 1 is possible. A link, which is assumed to be costless, from player ¢ to player j is formed
if and only if SLS{J = 1. That is, we assume that mutual consent is needed to create a link. Let
S =51 X ... x Sp. A pure strategy profile s = (s1, ..., $,) € S induces a directed network g(s).
Once the new network is formed, any agent (say ) receives open ideas at a rate p at each point in
time and send them to one of her selected destinations. Simultaneously, node i selects and processes
open ideas from her stock (if any) at a rate 1 per instant of time. Before ending the date, memory
plays its role, so each open idea stored in the stock is forgotten with probability ¢. After all this
process and just before the end of the period, the stock of open ideas of all nodes is updated.

2.2 Steady State analysis and payoff function

Suppose that the process reaches a Steady State and let us describe its characteristics. There are
two defining properties of the Steady State: the stock of open ideas of the nodes is constant and the
network is stable.

Let o; be the Steady State stock of open ideas waiting to be processed by node i. Under
stationarity, the number of open ideas standing in a queue behaves like a Markov process and the
arrivals and departures from each node i follow Poisson processes. Given that in Steady State all
open ideas that arrive to a node eventually depart from it in finite time, we must have that the
arrival rate of open ideas must be equal to its departure rate. That is:

1 1 ; if 0; > 1
p S 2= e Re=l gy
1eniig) M 0;(1+¢q) , otherwise

"Notice that this implies that the probability of two agents having exactly the same amount of talent is zero.



The arrival rate of ideas to agent 7 is equal to the sum, over all nodes sending to 7 in g, of the expected
number of ideas they get from out of the network per instant of time (p) times the probability of
sending them to i. The departure rate is formed by the processing rate and the rate of open ideas
that node ¢ forgets. Notice that when the stock of open ideas is lower than one the processing
capability of a node will be restricted. In such a case, only o; open ideas can be processed per period

(on average). From this expression we can write the Steady State stock of open ideas of a node as:

P ieni) w1t S gl

A Yenviom 25
0; = S 1y ) t Vie N (1)

g , otherwise

As we can see, the stock of open ideas of a node is completely determined by the network structure
(9), g and p.

The other defining feature of the Steady State is the stability of the network. But before defining
the stability concept we introduce the payoff function. As commented above, researchers only obtain
utility from the publication of ideas. Agent ¢’s publications can derive from her stock of open ideas or
from the open ideas that i previously sent to other researchers (notice that both sources can (partly)
coincide when g;; = 1). For a given network structure g, the following expression determines the

expected payoff agent i obtains per period when the stock of open ideas is constant for all agents®:

. 1 1 1 . 1
Li(g) =00 > —cfllu+hi)+gi—flh)l+— >  OW)cf(hi+hi) withe=5 (2)
1N (g)\i 1 oy Hi 1e M (g)\i

1 i 1 5 g4l

ZkENi(Q) t ’ if ZkENi(g) 223 = p )
where O(3) e ,if 0 < ZkeN,;gg) <,

0 ,lf ZkENi(g)y_k:O
For gj; =1, O(i)-L can be interpreted as the steady state probability that an open idea coming

Hj
from node j is chosen to be processed by i. The specific form of this probability derives from the

assumption about the selection rule of the ideas of the queue (all ideas have the same probability of

being selected). This probability is obtained by multiplying the share of ideas coming from j with
1

respect to all ideas researcher ¢ receives (Z“ﬁ) by the expected number of ideas that node 4
kEN;(9) pp

processes per period (1 if ZkeNi(g) #—1k > 9;—1 and o; otherwise?). About the payoff function, notice
that there are three main factors affecting agent i’s expected utility: ¢ will influence the decision
between retaining the open ideas or sending them to other authors, the queue size (included in (1)
or O(i) ) will affect the probability to process a specific open idea and the coauthor’s amount of
talent (h;) will affect the probability of publishing the processed ideas.

The network stability concept used here is pairwise-Nash FEquilibrium. In a PNE network, no

player must have incentives to deviate unilaterally (that is the usual Nash Equilibrium condition)

8By using the per-period expected payoff to analyze the incentives to deviate from a particular network we do not
consider the transition effects from one network to another. This simplification has minor implications specially for

cases in which the transition does not last in time and/or the discounting rate is near to one.
9Notice that for a given g, ¢ and p the expected stock of open ideas is determined by (1).



but we further require that any mutually beneficial link be formed in equilibrium. The pairwise-Nash
Equilibrium networks are robust to bilateral commonly agreed one-link creation and to unilateral
deviations. Formally, a pure strategy s* = (s7, ..., s5) is a Nash Equilibrium of the game of network
formation (previously described) if and only if II;(g(s*)) > IL;(g(si, s*,)), for all s; € S; and i € N.
Let g 4 ij be the network obtained by adding the link g;; to g.

Definition 1 A network g is a pairwise-Nash equilibrium network with respect to the network payoff
function 11 if and only if there exists a Nash equilibrium strategy profile s* that supports g, that
is, g = g(s*), and, for all pair of players i and j such that g;; = 0 if All;(g +ij) > 0 then
All;(g +1ij) < 0.

3 Results

Our aim is to show whether this model can replicate some of the characteristics of real scientific
collaboration networks. The empirical study Goyal, Van der Leij and Moraga (06) is an excellent
basis for having a detailed image of the features of actual networks in Economics. The results of
that paper ”show that the world of Economics is spanned by inter-linked stars, that this feature is
stable over time and that this is the main reason for small average distances”. From Newman (04)
a similar conclusion could be extracted for Biology, Physics and Mathematics. In what follows, we
will develop several results derived from the Steady State analysis of the model previously described
that show how this empirical evidence can be a natural outcome of our setting. Specifically, we
will see that for sufficiently low values of p a particular interlinked star network naturally arises
—from the interaction of self-interested researchers— as the unique PNE structure. Heterogeneity
and congestion are the key factors explaining these results.

In the following lines we present several propositions that identify certain features that PNE
networks can not have for any arbitrarily low value of p. As a consequence, these results will allow
us to narrow the set of potential PNE networks.

The first result refers to the number of out-degree links of a particular agent. In principle, the
researchers of this model can send their open ideas to many collaborators, i.e. there is no upper
bound on p, Vi. The following result approaches this claim.

Let G}, , be the set of PNE networks for a given pair (h, p).

Proposition 1 For any functional form of f(:), for any pair (h,py) and any g € Gj, , in which
p; > 1 for some i € N, there always exists a p; < py such that g ¢ G}, , Vp < py.

The proof (see in appendix) proceeds as follows. We consider all possible cases that a researcher ¢
with p; > 2 can face. Then, we analyze her incentives to sever the link with some of her collaborators.
We show that, for any vector h, the marginal payoff derived from such a deviation tends to be positive
as p — 0. Using the concept of limit, we show how this is exactly a reformulation of the statement of
the proposition. The intuition of the proof is very simple. The presence of heterogeneity implies that
any agent can order the destinations of her open ideas with respect to the expected utility obtained



from them. If an agent does not send all her open ideas to the destination that maximize this
expected utility is because of another important factor: agents have limited processing capability.
So congestion can arise and, as a consequence, queues can be formed. The longer it is the queue the
lower it is the probability to process the ideas coming from a particular researcher. When an agent
cuts some link off, she automatically increases the flow of open ideas sent to the rest of destinations
and, as a consequence, increases their queue size if congestion arises. This has a negative impact
on the expected utility of the agent who initially deviates. In the proof we show that as p — 0
this negative impact tends to vanish. In consequence, for a sufficiently low value of p, any agent ¢
with p; > 2 will have incentives to deviate and send her open ideas to the unique destination that
maximizes her expected payoff.

This result illustrates that whatever it is h, we can always find a sufficiently low value of p (say
p1) such that a network in which some agent has two or more out-degree links cannot be sustained
in equilibrium for any p < p;. Therefore, an upper bound on the equilibrium out-degree of nodes
naturally arises for low values of p. As introduced above, this result implies a dramatic simplification
of the set of possible PNE networks.

Focusing on the in-degree of nodes we can go one step further in that simplification. The following
result establishes an upper bound for the amount of ideas a node can receive in a PNE network for

any arbitrarily small p.

Proposition 2 For any functional form of f(:), for any pair (h,py) and any g € Gj, , in which
D len, ﬂil >1+ -":—01 for some i € N, there always exists a py < py such that g & Gy, , Vp < p,.

The intuition of the proof (see in appendix) is the following: when 7, . Nil > 1+ %01 for some
i € N, the stock of open ideas of ¢ will be higher than one even after severing one in-degree link.
Given that we have normalized the maximum processing rate to one, researcher i can delete one
in-degree link without damaging the average processing flow (which will continue to be one). In
consequence, agent ¢ can increase her average productivity if she severs an in-degree link coming

from a low-talent researcher who holds some specific conditions'®

. The proof shows that for any
vector h, there exists a p, that assures the existence of such a researcher for any p < ps.

The form of the production function has a direct effect on the incentives of collaboration. For
a concave f(-), working with another researcher (rather than alone) increases the probability of
publication less than proportionally with respect to the increase in the amount of talent. On the
other hand, a convex f(-) implies that adding some additional talent in the production process
increases the publication probability more than proportionally. For this reason, we can say that a
concave f(-) discourages agents to look for collaborators. Previous results are valid for any functional
form of f(-). But, in what follows, we will focus on the case in which f(-) is linear or convex. In
that way we will specifically analyze the features of equilibrium networks in the cases in which
collaborating with other researchers does not imply a loss of productivity with respect to working

alone. For these cases, next result also narrows the set of potential PNE networks.

10Tn particular, this agent (say j € N;) must have a level of talent sufficiently low and must hold the following
condition: ¢ ¢ Nj.
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Proposition 3 For a linear or convex f(-), a PNE network cannot have a player i with ZleNi w <

9:;—1 — 1 when some agent j such that hj < h; holds: g;x = 0 Vk such that hy > h;.

See proof in appendix. When f(-) is linear or convex and without considering the effects of
a potential congestion, researchers always prefer to have collaborators with a higher talent. If
D len, ﬂil < ﬂpl — 1 for some i € N, agent ¢ will not suffer congestion even after receiving a new
link. For this reason, if all the researchers who receive ideas from some investigator j have a talent
lower than h;, agent j will have incentives to concentrate all the previous destinations of her ideas
into a single one: agent . Moreover, since ¢ will not congest after receiving this new link, she will have
incentives to form it because this only has a positive consequence: increasing her processing rate.
Thus, such a pair of players cannot exist in a PNE network. Again, heterogeneity and congestion
are essential for obtaining the result.

Notice that this proposition implies that high talent players have to receive a minimum flow
of open ideas in any PNE network. Adding this result to Propositions 1 and 2 we can state the
following:

Corollary 1 For a linear or convex f(-) and for any vector h, high talent researchers have to receive
all the links of the network in any g € Gy, , for any p < p,. Specifically, q—:gl -1< ZleNi(g) i <
1+ ﬂpl for any high talent researcher i and any p < py.

The first claim of the corollary directly derives from Propositions 1 and 3. The bounds of
D 1eN:(g) l%l are obtained in Propositions 2 and 3. This result illustrates a kind of attraction force of
high-talent researchers in this model. This force is restricted by the possibility of congestion derived
from the limited processing capability. For this reason, there is an upper bound in the number of
open ideas a node can receive in equilibrium.

But notice that (for a linear or convex f(-)) there is no heterogeneity requirement on the dis-
tribution of talents to obtain Proposition 3. So, this attraction force of the best players will act
whatever it is the difference of their level of talent with respect to the rest. That is, the result
holds for any vector h extracted from a continuous distribution function. On the other hand, since
ngr—l 1< 3 enig #il < 9:2—1 + 1, notice that the lower it is p the higher it is 7,y () #il In

consequence:

Corollary 2 For a linear or convex f(-), in the PNE network candidates arbitrarily small differences
among agents’ productivity (talent) levels can generate highly unequal distributions of links. The
lower it is p, the higher it is the in-degree inequality.

Moreover, because of the convexity of the relationship between p and ;. (9) u%’ very small
changes in p can translate into tremendous increments in the in-degree inequality among researchers.
This contrasts with the results of Van der Leij (06) in which a minimum degree of heterogeneity
among agents is required in order to reproduce the results we observe in reality.

So, we already have reproduced an empirical fact: in our Steady State network, some few agents
can concentrate a lot of links (specially for low values of p). But, does this mean that we have

10



an interlinked star in equilibrium as suggested by the empirical results of Goyal, Van der Leij and
Moraga (06)? Following the previous results, that is not necessarily the case. For example, we can
have a network formed by stars, in which the central agents (who receive a number of links respecting
the bounds established in Corollary 1) are not connected between them. The next results focus on
showing that this cannot happen for any arbitrarily small p. Therefore, interlinked stars must arise
in equilibrium for low values of p. But in the next lines we go one step further and highlight a
particular interlinked star network as a serious PNE candidate for any arbitrarily low p.
Let G* denote the set of interlinked star networks holding the following three properties:

o 1, =1VieN.
e g;; = 1ifand only if h; > h; VI € N and [ # i.

e For any given pair (h;, h;) such that h; > h; and g;;, = gj; = 1 for any k,I € N, it must be
true that hy > h;.

The first condition simply states that all the nodes of the network have only one out-degree link.
The second property implies that, except for the highest talent player, this link must go towards
some other agent. Finally the last condition narrows the set of possible destinations of this out-
degree link. To be clear the last two conditions imply that the agent with the highest talent (say
agent 1) receives her in-degree links from the nodes located just below her in the ranking of talents;
the second player in this ranking (agent 2) receives her in-degree links from the nodes located just
below the first group of players in this ranking; and so on.

Lemma 1 For any given pair (h, p) such that p < po, there is a unique network in G* in which no
agent 1 with n; > 0 has incentives to change n;.

See proof in appendix. Let g° be the unique network derived from this lemma. Intuitively g¢°
is an interlinked star network in which the best researchers (the ones with a higher talent) receive
their in-degree links from the best possible collaborators given what better researchers are receiving.
Moreover, given Lemma 1, they do not have incentives to add (or delete) any in-degree link. The

following two results show the relevance of ¢g° in this model.

Proposition 4 For a linear or convex f(-), for any pair (h,py) and any g € G}, different from
g°, there always exists a p; < py such that g & G, , Vp < p;.

See proof in appendix. This result shows that whatever it is h, we can always find a sufficiently
low value for p under which a network different from ¢°* cannot be sustained as a PNE. Therefore,
the set of potential PNE networks for any arbitrarily small p reduces to one single topology. In the
proof we show that for any network g # ¢° we can always find a player (or a pair of players) whose
marginal payoff for deviating tends to be positive as p — 0. Notice that, using the definition of
limit, this implies that such a network g cannot be PNE for any arbitrarily small p. Intuitively, the

mechanisms underlying this result are the following ones. We first show that if we have a network
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different from g¢* and p < p;, then there must exist an agent ¢ who sends all her ideas to a node
(say k) such that hy < hj, where j is the node that receives the ideas from i in ¢g°. If ¢ does not
deviate from this network and sends all her ideas to j is because of the possibility that j has a
much longer queue than k& due to congestion problems. As p goes to zero the differences between
the queue sizes of different players (for example, j and k) become relatively smaller. Then, we reach
a point in which the player i’s incentives to deviate are basically driven by the differences between
the talents of j and k. Since hj < hj, player ¢ would have incentives to cut g, off and propose
gij. For the deviation to take place, node j should have incentives to form the new link g;;. In the
worse case, agent 7 would only accept such a link if the average productivity from the ideas of her
queue increases after the deviation. For a sufficiently low p, we can state that as p — 0, this average
productivity decreases. Then, there is a point in which this average is so low that the formation of
gi; push this average productivity up.

After Proposition 4, the set of PNE candidates reduces to one single network for an arbitrarily
small p. The following result confirms that ¢° is in fact a PNE for a sufficiently low p.

Proposition 5 For a linear or convez f(-) and for any pair (h, py), if ° ¢ G}, p, there always exists
a py < py such that g* € G}, ,, Vp < p,.

See proof in appendix. In the proof we check all the possible deviations from ¢g*. We find that, in
the worse cases, the marginal payoff of potential deviators tends to be negative as p — 0. Therefore
for any vector h, we can always find a sufficiently low p such that no player have incentives to deviate
from ¢g°. From an intuitive point of view, the proof can be explained as follows. There are two kinds
of deviations from g°. On the one hand, agents can substitute their out-degree links (only one per
node) by a new one (or simply create an additional link) towards an agent with a talent lower than
the one of the previous destination. In such a deviation, these agents trade-off the potential benefits
from avoiding or reducing the effects of congestion against the costs of reducing the productivity of
the processed ideas due to the lower talent of the new destination. In the proof we show that the
positive part of this trade-off tends to vanish as p — 0, and in consequence, the marginal payoff for
deviating tends to be negative. The other type of deviation consists on substituting the current link
by a new one (or simply create an additional link) towards an agent with a talent higher than the
one of the previous destination. In that case, we use Lemma 1 to conclude that the marginal payoff
of the new destination to accept the link will be negative.

From the last two propositions, immediately emerges the following corollary. Let p = min(p;, py)-

Corollary 3 For a linear or convez f(-) and for any vector h, there exists a p such that g° is the

unique PNE network for any p < p.

Existence of ¢g° as a PNE comes from Proposition 5 and uniqueness comes from Proposition 4.

Notice again, that we do not need to impose any degree of heterogeneity among agents. Specifi-
cally any talent vector h extracted from a continuous distribution function can generate the previous
result. For these reasons we conclude that the kind of networks GVM observes in reality are a natural
outcome from the interaction of self-interested researchers of this model.
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Before ending this section of results, it might be interesting to give some hints about the behavior
of the model for a concave f(-). As commented above, concavity of f(-) discourages agents at
the moment of looking for collaborations. In consequence, we cannot assure the stability of the
interlinked star for all distributions of talent even for arbitrarily small p. In particular, we would
need a sufficiently high inequality across levels of talent to support such a network of collaborations.
This inequality is also required to support other structures with high in-degree inequality (non-
interlinked stars) as stable networks.

Remark 1 For f(-) concave, networks with high in-degree inequality (as an interlinked star) may
not be PNE even for arbitrarily small p. To assure stability of this kind of networks we need a
minimum degree of heterogeneity among researchers’ talents.

On the other hand, other networks such as the empty network or the cycles can arise in equi-
librium even with low values of p, specially when inequality across levels of talent is not so high.
Summarizing, for a concave f(-) the key factor affecting the shape of the stable network would be
the inequality across levels of talent. Only highly unequal talent distributions will allow to obtain

stable networks with a high in-degree inequality such an interlinked star.

4 Discussion

4.1 Empirical patterns

To reach the conclusion that the world of Economics is spanned by interlinked stars Goyal, Van der
Leij and Moraga (06) analyzes some empirical patterns. In this paper we showed that a very simple
network formation model characterized by the limited processing capability of heterogeneous agents
can reproduce the features of the in-degree distribution of the so called interlinked star network
in equilibrium. In this section, we discuss how can our model be extended to explain some other
empirical patterns.

One of the first empirical findings of GVM refers to the average number of collaborators. For the
giant component of the analyzed coauthorship network this average goes from 2.48 in the 1970’s until
3.06 in the 1990’s''. None of the results of our model excludes the possibility of having these average
numbers of collaborators. In fact, we can have equilibrium networks with 2, 3 or more collaborators
per researcher. But, as Proposition 1 shows for low values of p, it would be specially difficult to
have some researcher ¢ € N with more than one out-degree link in a PNE network. Therefore, for
low values of p our model can hardly reproduce this average number of collaborators.

A very easy extension of the model will allow us to naturally reproduce this empirical fact. Imag-
ine that there exist different types of talent. Researchers are specialists, so they have a specific type.
Moreover, ideas can require some specific type of talent to be published that does not necessarily

coincide with the type of talent of the first receiver. For this reason, we can also classify the ideas on

I Newman (04) founds that the average number of collaborators in Biology, Physics and Mathematics were 18.1,
9.7 and 3.9 respectively.
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different types. To be specific let h¥ denote the agent 7’s amount of talent of type x. Let f(h? +hj )
be the expected probability of publishing a processed idea of type = by researchers ¢ and j. The rest
of the model would not change with respect to the one described in section 2. In this new model,
agents would have incentives to select specialist collaborators for each of the different types of ideas
they can receive. Thus, equilibrium networks would be able to reproduce higher average numbers of
collaborators. Moreover the average number of collaborators in equilibrium would positively depend
on the degree of researchers’ specialization. Therefore the model would constitute a formalization
of the argument defending that one of the key factors explaining the increase in the flow of scientific
collaboration is the increase in the specialization of researchers. This increase in the number of
collaborators is a trend that GVM detected for the last 30 years in the world of Economics.

With respect to the degree distribution, GVM founds that such a distribution exhibits fat-tails
with a small fraction of scientists having a large number of collaborators. The same can be concluded
for the fields of Biology, Physics and Mathematics as Newman (04) shows. The results of our model
show that the links concentrate in the high-talent researchers. Decreasing the value of p will increase
the number of links directed towards each of these researchers and, in consequence, increase the
inequality in the in-degree distribution. At this point it is worth to mention a particularity of
our model. In equilibrium high talent researchers will roughly have the same number of links (see
Corollary 1). Evidently, this is not the case in actual networks. This result arises because of a very
easy simplification of the model. We assume that all players in our game have exactly the same
processing capability which we have normalized to 1. By allowing different processing rates, the
model would be able to reproduce equilibria with different in-degree levels for different players.

The last empirical pattern we want to discuss is referred to clustering. GVM shows that “the
most connected individuals collaborated extensively and most of their coauthors did not collaborate
with each other”. Our model cannot give an intuitive explanation for that. Focusing on the role
of heterogeneity among players and their limited processing capability (as our model does), we can
only give an intuitive argument for explaining a lower or higher number of links per node which is
not a sufficient condition for explaining their level of clustering. In order to explain the patterns
of clustering, probably we have to look for arguments related with some kind of geographic or
conceptual proximity between researchers. A very simple extension of the model can capture this
kind of considerations. Let us assume that researchers are distributed in groups. A group can be
defined in a very broad sense. Two researchers can be members of the same group if they are in the
same department, if they work on similar topics or if they share a common personal characteristic.
If two researchers ¢ and j are in the same group then d;; = 1; otherwise d;; = 0. We can reasonably
argue that two members of the same group will have more facilities to collaborate with each other
and this will increase their joint productivity. Formally we can write the expected probability of
publishing a processed idea by nodes ¢ and j as f(h;+h;+kd;;) for some k > 0. This simple extension
will allow the model to reproduce equilibrium networks with a high clustering between members of
the same group and low clustering between the high talent researchers of different groups. This
kind of a priory distributions of agents in a network formation model are analyzed by Rubi-Barceld
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4.2 Stability and efficiency

A network is efficient when it maximizes the aggregate payoff. The set of efficient networks usually
does not coincide with the set of stable networks. In fact, one of the most habitual analysis in the
network formation models is the comparison between the stable and the efficient networks of the
model. Jackson (04) collects a great variety of examples of this kind of studies. The most similar
to ours appears in Jackson and Wolinsky (96). These authors develop a very simple coauthorship
network formation model as an example of how negative externalities can play an important role
in the network formation process of the academic world, and in particular, in the conflict between
stability and efficiency. In the efficient network of the model, researchers are distributed in pairs,
i.e. two agents connected with each other and isolated to the rest. But, the stable network is over
connected with respect to the efficient one. In that model, the good strategy from an individualis-
tic point of view does not coincide with the good strategy from an aggregate point of view. This
problem, is specially relevant when talking about coauthorship networks because it implies that
researchers’ individual incentives are damaging the total scientific production. Therefore, the ex-
ample of Jackson and Wolinsky (96) offers a very pessimistic image of what could happen in actual
scientific collaboration networks. In the next lines we will show that in our model, individual and
aggregate incentives are much more aligned. In spite of that, they do not fully coincide.

The results of Section 3 clearly point out towards g° as the stable network for any arbitrarily
small p when f(-) is linear or convex. In this section we will look for the efficient network(s) in
this case. This will make the comparison between stability and efficiency easier. A priory, we can
already say that ¢g® has favorable features to maximize the aggregate payoff. In particular, for a
linear or convex f(-) seems to be suitable that high talent players collaborate with each other. But,
is the structure of collaborations of g® the best one in order to maximize the aggregate payoff for
any given pair (h, p)? The next result answers to this question for an arbitrarily small p.

Proposition 6 For g = g° and for any vector h, there exists a p* such that for any p < p*, if we
substitute a link g;; by a new link g;, then the marginal aggregate payoff decreases when hy < h;
and increases when hy > h;.

See proof in appendix. That is, the accumulation of links towards the high talent players have
positive implications for the aggregate payoff when p is sufficiently small. Once again the trade off
between the benefits of working with high talent researchers and the costs of working with more
congested coauthors come on stage. By changing g;; by a new link g;; such that hy < hj, the ideas
of agent i can avoid congestion problems but they will have a lower publication probability once
processed. On the other hand, by changing g;; by a new link g;; such that hy > h;, k can suffer
congestion problems but 4 increases the publication probability of her processed ideas. But when

p — 0 the congestion problems tend to disappear. As a consequence, the aggregate marginal payoff

121n that paper the payoff function is very different to the one used here.
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increases if high talent players receive more ideas and decreases when high talent players receive less
ideas.

The result show that the PNE interlinked star network we obtained in the previous section is
not efficient for any p. And also shows that the way of increasing efficiency when the entrance rate

of open ideas is sufficiently low, is accumulating links towards the high talent researchers.

4.3 Structural Holes and heterogeneity

The notion of Structural Hole in social networks was first introduced by Burt (92). A Structural
Hole is a disconnection among agents on the network structure. Several authors'® provide empirical
evidence that people who bridge structural holes in social networks have significantly higher payoffs.
In particular, Burt (2004) shows, in a firm environment, that compensation, positive performance
evaluations, promotions and good ideas are disproportionately in the hands of people whose networks
span structural holes.

To explain this empirical evidence one can follow two opposite lines of reasoning. First, one
can say that is because of the position in the network that players can enjoy a significantly higher
payoff. The theoretical model of Goyal and Vega (07), will reinforce this reasoning. In that model,
the authors show that ex-ante identical agents configure a stable network in which there are very
high inequalities in the equilibrium payoff distribution —a single player obtains a disproportionately
higher payoff due to her position.

On the other hand, one can defend that ex-ante differences between agents explain the differences
in the location and, in consequence, in the payoff these agents can reach in equilibrium. This is the
line of reasoning our paper follows since what finally generates that good players become the center

of the stars in the final equilibrium networks is the assumed heterogeneity among agents.

5 Conclusion

In spite of the great variety of empirical papers about scientific collaboration networks, there is a
lack of foundational theoretical models that analyze how the decisions of individuals contribute to
scientific collaboration network formation. This paper proposes a dynamic model to analyze the
formation of this kind of networks.

We focus on the role of heterogeneity among agents’ productivity and congestion problems de-
rived from their limited processing capability to show that self-interested researchers can organize

themselves in the way we observe in reality, which is, inter-linked stars.

3Burt (1992), Mehra, Kilduff and Bass (2003), Podolny and Baron (1997), Ahuja (2000)
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A

Proofs

Proof of Proposition 1. Let g be a PNE for a given pair (h, py). Let ¢ € N be a member of this

network who has p; > 2. We claim that there exists a p; < p, such that g will not be PNE for any

pair (h, p) such that p < p;.
Let us focus on the case in which u, = 2 (the cases in which p; > 2 can be proved analogously).

Let players k and j be the destinations of these two links, that is, g;; = gix = 1. Here we consider

the case in which ¢ # j and ¢ # k. The case in which ¢ = j or i = k is analogous, thus omitted. Next

we analyze the 4’s incentives to deviate. At this point we have to distinguish the following cases:

i

il

q+1 — ki
D ien. g)uzz 5~ forr =k, j.

The 7’s marginal payoff for cutting the link g;; off is positive if and only if:

f(hi + hyg) o 1[f(h-+hk) n f(hi + hy)
ZlENk ull +% 2 ZlENk 1y ZlEN] I

On the other hand, the i’s marginal payoff for cutting the link g;; off is positive if and only if:

f(h; +h) < 1[f(h —i—hk) +f(h +h)
ZlENJ Nz 2 ZleNk H ZlENJ H

ml (i)

] (i)

Given that 0 < m < ;% for r = k, 7 we can say that:
r(9)
1 1
limp_,() ) =0

1 1 1
Yien, w T2 Zieng) i

Following the deﬁnition of limit we can say that for any £ > 0, there exists a p’ such that

|Z ILJF > T | <eforr=k,j, for any p < p’. Given that h; # hy, notice that if
IEN, ] T2 lENr(g) 1
[(hsthr)

the LHS of conditions (i ) and (ii) were equal to
lEN, /»Lz

would be complementary. So, we can conclude that for any specific vector h, and in particular

L for r = k, j respectively, (i) and (ii)

for any specific triple (h;, h;, hi), there exists a p’ such that some of the two conditions (i) and
(ii) has to hold for any p < p’. That is, for a sufficiently small p agent 7 will have incentives to

deviate and cut one of her out-degree links off.

ZleN w2 gp— and = — S ZleNk(g o< 9— (or vice versa).

The ¢’s margmal payoff for cutting the link g;; off is positive if and only if:

h; +h 1 h; + h;
/ +1 k)l > o [L f(hi+hk)+—f( ki f)] (iii)
dieny T2 21ta DeN; W

The 7’s marginal payoff for cutting the link g;; off is positive if and only if:
h; + h; 1 hi + h; .
Jhithi) 1P gy opyy 4 LT R (i)
duen; 7 T2 21+a DeN; W
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Giventhat 0 < =L+ < 3% for r = k, j we can say that lim,_o( 0

1 _p
Y leNn(o) 7T ] +3 Yien, ﬁﬂré 1+q)

L) = 0. Following the definition of limit we can say that for
ZZEN M 2 ZleNj By

any € > 0, there exists a p” such that |=————+ — L
Y P |ZleNk #1 +3 1+q ;Lll+2 ZZEN7 )

for any p < p”. Given that h; # hg, notice that if the LHS of conditions (iii) and (iv) were

equal to 2 (? +‘;h’”) and Lith L) respectively, (iii) and (iv) would be complementary. So, we

LEN; Ty
can conclude that for any specific vector h, and in particular for any specific triple (h;, hj, hi),

and lim,_o(

|<£and|Z€N | <e

there exists a p” such that some of the two conditions (iii) and (iv) has to hold for any p < p”.
That is, for a sufficiently small p agent ¢ will have incentives to deviate and cut one of her
out-degree links off.

iiigt— %SZ <9—f0r7“—k:]
i 1 > gtl 1 g+l 1
v ZlEN (9) 1 = P and ZlENk(g) W< 2"
gl _ 1 q+1 1 g+l 1
VIR =3 S en i <5 ad Yieng i <5~ 3

The proof for these three cases proceeds analogously to the previous one.

. 1 .
Vi D ien, (g) M < -q— 5 forr =k, j.

In this case it is easy to check that agent 7 will have incentives to sever the link with the agent

with the lowest level of talent for any given p.

Therefore, in any possible case in which 3i € N such that u; > 2, we can find a sufficiently low
value for p under which there is a profitable deviation. Defining p; as the minimum of all these
values of p, the proof of the proposition is done. m
Proof of Proposition 2. Imagine we have an agent 7 such that »_, N 21+ 9— in a network
g € G}, for a given pair (h, py). First we claim that there is a p (say pz) such that for any p < po
the talents of the members of IV; hold one of the following two sets of conditions:

a Jk € N; such that k ¢ M; who holds:

Cf(hi+hk)<+l( > iCf(hlJrhz')Jrgn‘if(hi)) (v)

2ien; W 1eN\{ik)

b g;; =1 and
1 1
> —cf(hu+hi)

fhi) < &=——F—
ZleNz_ 7;7 ey M

Let us proof this initial claim. Since the levels of talent are extracted from a continuous distri-
bution function, either we are in case (b) or there must exist some agent k € N; (k # i) whose joint
productivity with i (cf(h; + hg)) is below the average productivity of the rest of agents of N, i.e.
some k € N; (k # i) holds condition (v). But, for (a) to be hold this agent k should not receive
a link from 4. In the next lines we show that for a sufficiently low value of p such an agent should

exist.
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Notice that from Proposition 1, there exists a p (that we call p, ) such that y; = 1inany g € G}, ,
for any p < p;. Therefore, if at least two agents j,k € N; have a joint productivity with ¢ below
the average of the rest of players in V;, we already know that one of them will not be in M; for any
p < py. But there can be a single agent (say j) such that j € M; and whose joint productivity with
i is below the average of the rest of players in N;. Next, we show that for a sufficiently low p this
case cannot be hold when 7, . M >1+ g—

Imagine that cf(h; 4+ h;) = ¢ for e > 0 arbltrarily small. Let hy be such that:

f(hj +hi) < flhie+h) < f(hi+h;) V€ Nl\{Z} and cf (hx + h;) < f(hi) for k #1
F(hw) < ef (hy + hi) VI € N\{k, 5} for k — i

Let us assume that c¢f(hg +h;) = b for k # i (or f(k) =b for k = ). We know that there is an € > 0
arbitrarily small under which cf(h; + h;) > b+¢ VI € N;\{i, 7, k}.Then, the average productivity of
the players of N; different from k is higher than:

1 _ 1 T,
ZleNi Hy Hg, lEN; Hu o Hj Fok

After some simple algebra we can conclude that this expression is higher than b when the following

condition holds:

b+e>(b+ b ) ZleN””_’Tk

1 1
2eN: W Ty

k

1
Given that p; > 1 Zien; T [ < 1. Since Y cp, L > 14 9i1, we can conclude that

T Yien, Tl_Tk_i""l i
lzmpﬁoz+__ = 0. This implies that for any € > 0, we can always find a value of p (say p')
LEN; ny  pg
such that |ﬁ| < e for any p < p’. Therefore, for any p < p’ we have at least two agents
LEN,

(j and k) who hold condition (v). As commented above, one of them must fulfill all the conditions

of case (a) when p < p;. Let py = min(p;, p’). That concludes the proof of the initial claim.
Next step is to show that a network that holds one of these two cases cannot be sustained as a
PNE for p < p,.

If we have case (a), agent ¢’s marginal payoff for cutting the link gg; off is:

1 1 1
All; = Z—[ Z —Cf(hz +h;) + giiff(hi)]
leN: p, By 1EN;\{i,k} Hi

1 1
x| —Cf(h + hi) + gii— f (hi))
ZZENI I lej;{ } : M

After some simple algebra we can say that AIl; > 0 if and only if condition (v) holds. This happens
by definition of k. Thus, agent ¢ have incentives to deviate.

If we have case (b), agent i’s marginal payoff for changing the link g;; for a new link g;; Vj ¢ N;
is:

JN [ 1

1
ZleN,; m

> —Cf(hl + hi) = f(hi) + Oxnief (hi + hy)]
P AN
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Zl N + )
P ENk 1y~ B
where 6 = I4q if q+l <1
ﬁ otherwise
Under conditions of case (b), Zﬁ S Lef(hy+ ki) > f(hi), thus ATL; > 0. For the
IEN; Ty~ 15 1EN {4} Hq

deviation to take place, agent j should accept the formation of the link g;;. Given Proposition 1, we
can say that there exists a value of p (say p;) such that p; =1 for all [ € N, for any p < p;. Given
that ZleNi #il >1+ 9;—1, we can say that 1, > 2. Since p; =1 for all [ € N, there must exist some
agent k € N with n,, = 0. For such a node the marginal payoff for accepting the link is:

ATl > cf (hy + h;) >0

Notice that AIl; > cf(hi + h;) only when gx; = 1. Therefore, both players i and &k have incentives
to deviate and form the link g;;.
Given that py < p;, the proof is completed. m

Proof of Proposition 3. Before the proof of this proposition we need an additional lemma.

Lemma 2 Ifc> 1, f(0) =0 and f(-) is linear or convex, then cf (hi, + hy) > f(h;) for hy, > hy.
Proof. For a linear or convex f(-) with f(0) = 0 and c = 1, the inequality cf(hi, + hi) > f(l)
reduces to hi > hy after some simple algebra. For f(-) conver and ¢ > %, the difference between
cf (hi + hy) and f(hy) will be higher; therefore, the inequality of the statement also holds. m

By contradiction let us assume that we have a PNE network in which agent 4 holds } ;. N, ulz <

— 1 and there exists an agent j with h; < h; who holds: g;, = 0 Vk such that hj > h;. Imagine
the deviation in which player j cuts all her out-degree links and proposes to agent i the formation
of a new one. In such a case the marginal utility for player j is:

—cf(h + i) - LS eWef(u+ hy) +9;00) £ (1))

ATl =
1 5 1e M\ {5}

From definition we know that ©(l) and ©(j) are lower or equal than t#-. By assumption, h; < h;
VI € M;. On the other hand, by Lemma 2 we can say that for a linear or convex f(-) and ¢ > 1 55
cf(hj + h;) > f(hj). All that restrictions imply that AII; > 0.

But in order to complete the proof we need to show that agent ¢ will have incentives to form the

link. Her marginal utility from accepting it is:

AL =L —cf(h +hl)+g”1f(hi)+cf(hi+hj)]

L+ qenpgiy M M
c
+— > O)cf(hu+h)

12 lElJW \{ }

Y Sefh )+ g fR) 4SS O+ h)
l i i - l i
L+ qenng 1y g Hi 1e MA{i}
lGMj
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where (1) corresponds to the variable ©(l) for the new situation in which agent j has cut all her

out-degree links off. After some simple algebra:

AL =L cfhi+h)+= S (O0) —0®))cf(hy + hy)
I+q Pi 1e i\ fi}
lEMj

For | € M, ©(1) > O(1). Therefore AIl; > 0, contradicting the initial statement of stability. m
Proof of Lemma 1. In this proof we will show that for any given pair (h, p) such that p < ps,
if ¢ € G* there is only one possible distribution of links under which no player have incentives
to change her amount of in-degree links. This implies that only one network in G* can hold this
condition. To demonstrate it, we proof that to not having incentives to change 7,, any node must
have a given amount of in-degree links.

Imagine a player ¢ and a given in-degree n; > 0. Given that p < py < p;, players can have at
most a single out-degree link in any PNE network (Proposition 1). Then, >,y u% =mn; Vi € N.
Moreover since p < p,, we can say that q—Jprl —-1<9< q—:gl +1 (Corollary 1). Given that 7; can only
take natural numbers, there are at most two possible values for n; in any PNE (say 77 and 7—1). We
claim that for only one of these two values agent ¢ will not have incentives to change her in-degree
for a given pair (h, p). First of all, it is easy to check that the following must hold:

Given these inequalities, it is easy to conclude that in any ¢ € G* no player ¢ with n, = 1 will
have incentives to accept an additional in-degree link. Moreover, no player ¢ with n, = n — 1 will
have incentives to delete one existing in-degree link. Therefore, there are only two possibilities of
deviation. An agent i can have incentives to cut one in-degree link off when 7, = 7 or she can have
incentives to accept some additional in-degree link when 7, = 7 — 1. Analyzing the marginal payoft
of both deviations, we will observe that if one is positive the other must be negative.

Let n; = n and g;; = 1 in a given network g;.The agent ¢’s marginal payoff for deleting the

in-degree link g;; is:
1
All; = ﬁ[ S cf(hi+ )+ giif(hi)] - %[ o cfthi+h) +gif (b))
LEN:(91)\{i,5} leN:(g1)\{i}

After some simple algebra, AIl; > 0 if and only if:

(% -0 > cf(hi+ )+ giif(hi)] > cf (hi + hy)
T N (o)

On the other hand, let n, = 7 — 1 and g;; = 0 in a given network g». The agent i’s marginal
payoff for creating the link g;; is:

1
Al == > cf(hi+ k) +cf(hi+hy) + gii f (hi)] — %[ > cf(hi+ )+ gif (hi)]
" ieN @\ T ien @i}
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After some simple algebra, AIl; > 0 if and only if:

(%*1)[ Z Cf(hi+hl)+gm‘f(hi)] <Cf(hi+hj)
T N @)

Notice that 3¢ v, g\ gy €F (Ri + i) = 3 1en, g\ i,y €f (i + ). Therefore, one (and only one)
of the two previous inequalities will hold for any vector h. In consequence, in one (and only one) of
the amounts of in-degree links player ¢ will not have incentives to change her n,. m

Proof of Proposition 4. Let g be a PNE network for some pair (h, p,), i.e. g € G;;,po. Let g;;
denote the link g;; in the network g° (gfj = 1 if and only if node i have a link towards j in g¢°).
Imagine that g is different from g°. This implies that there exists an agent (say ¢) such that g; # ¢3,
for some [ € N. For this to be the case we have several possibilities. In the next lines we will show
that there always exists a sufficiently low value of p (say p;) under which none of these possibilities

can be sustained in a PNE for any p < p;. Let j € N be such that g; = 1.

(a) The first possibility is that agent ¢ has more than one out-degree link. Following Proposition
1, we know that there exists a p (we called p;) such that such a network cannot be sustained
as a PNE for any p < p;.

(b) Second, agent i can have a link towards k, i.e. g; = 1, and hy < h;. Now let us show that
this second case cannot be hold in a PNE network. Two subcases need to be considered:

— k =1. In such a case, consider that player i substitutes the link g;; by the new link g;;.
Let consider the extreme (and less favorable) case in which o; <1 and ), N; #il > %1.
The agent i’s marginal payoff from this deviation is:

1
AL SR — f(hy + hs)

- 1,1
ZlENJ‘ Hy + n M

p 1
+1—+q[ > ;Cf(hlJFhi)]
1eN\{i} M

p 1 1
———1 > —cf(h+h)+—f(hi)]
1+ql€Ni\{i} 1 Hy

We can conclude that AIl; > 0 if and only if:

1 1
P(ZleNj I + M_I)

Cf(hj + hi) > l+g

f(hi) (vi)

. .. _ 1 _ . .
Given Proposition 2, 3p, such that ZleN]- Mll <1+ % f;)zr: any ;1) < 1p)2 in a PNE. Given
. _p . —+T
that ZleNj ﬂil > 9;—1, we can write that for any p < p,, i{% € [1+ﬁ—qi, 1+
. P ien; it
Ti_q(l'i';%))' So, limy—o GIIJF;Z :
that cf (h; 4+ h;) > f(h;) for f(-) linear or convex and ¢ > 1. Following the definition of

limit, we can conclude that for a linear or convex f(-) and for any € > 0, there always

= 1. On the other hand, from Lemma 2 we know
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. Cren, 1+5)
exists a p’ < py such that |p#+;”;‘” —1] < e, Vp < p'. Therefore, for any vector
h, and in particular for any pair (h;, h;) we can find a sufficiently low value of p (say p’)
( )
such that %%

(when f(-) is linear or convex).

is sufficiently close to 1 to hold condition (vi) for any p < p’

— k # i. Let us assume the extreme (and less favorable) case in which o < 1 and
e N, l%z > 9;—1. The marginal payoff derived from the change of destination of open
ideas of agent ¢ to agent j is positive when:

(ZleM I —i)p .
1 q f(hi + hy) (vii)

f(hj + hz) >

p(ZLENJ ) L)

=1
1+q
Given that in case (b) h; > hy, following the deﬁnition of limit we can conclude that

P(ZZEN L

. ) .
there always exists a p”’ < py such that + is sufficiently close to 1 to hold

From the previous point we already know that for p < p,y, lim,_q

condition (vii) for any p < p”.

(c) Notice that there is a third case in which ¢ has a unique link towards k and hy > h;. For any
p < pp, no other node has more than one link. Since g is a PNE, this implies that if g, = 1,
either gi; = 1 and then k is in case (b) or 31 € N such that ¢gj, = 1 and gix = 0; otherwise,
agent k would have incentives to cut some in-degree link off (from the definition of ¢°). If
I € N such that gj;, = 1 and gi = 0, notice that g; = 1 for some r € N. If h, < hy, agent [
is in case (b). If h, > hj we can repeat the same argument as before. Since n is finite, we will
eventually reach an iteration in which some player would be in case (b). In consequence, if a
player is in case (c), for a sufficiently low p there must exist a different player in case (b).

But for the link g;; to be formed, node j must agree. If o; < 1 after the deviation, player j’s

marginal payoff will be positive. On the other hand, let us consider the case in which ), N, I}l > ﬂpl
(the case in which 0= —1 <37, N < 9— is analogous). Player j’s marginal payoff for forming
gi,j is:
1 1 1
cf(hi +hj) > = — f(hu + hj) + 95— f(h;)] (viii)
Zl€N7 w lEN\{} Mz ey

where the RHS can be interpreted as the average productivity of the ideas stored in the queue of j.
Given that agent j receives some link in ¢°, we can conclude that j will have a relatively high level
of talent. In consequence, we can say that there should be a p° such that for any p < p° the average
productivity of the ideas of the queue of ¢ depends positively on p (and, in consequence, it depends
negatively on 7, N, 7o L ). Therefore it should exist a p”’ such that for any p < p" condition (viii)
holds.

Given that p’ < p, and p” < py < pq, if we define p; as min(p’, p”’, p"’’) the initial claim is proved.
|
Proof of Proposition 5. For ¢g° to be a PNE network, it should be robust to the following list of
deviations. Next we will show that, for a sufficiently low p, it does.
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a Let gi; = 1. Let us consider that ¢ changes the destination of her open ideas from j to herself
(by definition of g°, h; < hj;). From Lemma 1, we know that if ; > 0, then agent ¢ will not
have incentives to change her amount of in-degree links by definition of g®. So let us consider
that , = 0. We claim that the marginal payoff obtained from this deviation is negative
for a sufficiently low value of p, and therefore, network ¢* is robust to such a deviation for

a sufficiently low p. To show it let us take the extreme (and less favorable) case in which
1

researcher j holds ), N, > 1—;’1. In that case, i’'s marginal payoff will be negative when the

following condition holds:

1 .
f(hs) < ﬁcﬂm + hy) (ix)

Given that j receives some link in ¢® (then, she has a relatively high level of talent), we can

atl _ 1 g+l 5
use Corollary 1 to state that £5= —1 < 37y (0o o < 14+ 4= fora p < py. After some
1+4+q < 14+q < 14+q
14+q+p leeNj;%z = 14q—p-
So, we can conclude that for p < ps, limp_,oﬁ% = 1. On the other hand, from Lemma
LEN; T

2 we know that cf(h; + h;) > f(h;) for f() linear or convex, h; < hj and ¢ > 3. Following
the definition of limit, we can say that for any € > 0, there always exists a p’ < py such that

simple algebra, we can see that this is equivalent to say that

|#qj — 1| <&, ¥p < p'. Then, for any h vector, and in particular for any pair (h;, h;)
1EN; Ty
we can always find a sufficiently low value of p (say p) such that condition (ix) is hold for any

p < p', when f(-) is linear or convex. In this case, agent ¢ will not have incentives to deviate.

b Let us consider that node ¢ changes the destination of her open ideas from j to some other

researcher with a lower talent k. This case is analogous to the previous one, thus omitted here.

¢ Let g5, = 1. Let us consider that node j cuts the link g7, off and proposes the link g;; to agent
1 whose talent holds h; > hy (the case in which agent j simply proposes an additional link
to an agent ¢ with h; > hy is analogous). Given Lemma 1, the agent i’s marginal payoff for
accepting this deviation will be negative for any p < py. Thus, ¢° is robust to such a deviation
for p < ps.

d A node i deletes one (or more) in-degree link. Given Lemma 1, the agent i’s marginal payoff

for deviating will be negative. Thus, ¢° is robust to such a deviation.

e Let gi; = 1. Let us consider that node i proposes the formation of the additional link g;x
to player k'%. Given case (c), it only remains to analyze the case in which hj, < h;. From
Lemma 1, we know that if p, > 0, for any p < py agent k& will not have incentives to change
her amount of in-degree links by definition of ¢°. So, let us consider that p;, = 0. We claim
that the marginal payoff obtained from this deviation is negative for a sufficiently low value of
p, and therefore, network ¢ is also robust to such a deviation for a sufficiently low p. Given
that u;, = 0, player k would accept the formation of the link. But, does agent ¢ have incentives

14Notice that k is not necessarily different from 1.
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to make such a proposal? The marginal utility obtained from that deviation would be:

c 1
- ,+1[ I _1
M ZlEijl 2

AL Flhi+hy) + qu(hz- + )]

1+

_ —lui ZleNj Mil cf(hi + hyj)
where p; = 1. After some simple algebra, we see that AIl; > 0 if and only if:
1+g¢ ZleNj ﬁl -1

(ZleNj ;% - %)(ZleNj i)
We know that hi, < hj. On the other hand, given that j has a relatively high level of talent,
we can use Corollary 1 to state that ﬂpl -1< ZleNj(gs) uiz <1+ q—::l for p < py. Then

f(hi+hi) > f(hi + hy) (%)

we can conclude that, for p < p,, lim,_, 4 ey oy !
’ 2 o p (ZLENj ;%l_%)(ZLENj ﬁ)

following the definition of limit, we can conclude that for any vector h there always exists a

= 1. Since hy < hj and

sufficiently low value of p (say p” < py) such that condition (x) holds for any p < p” and, as
a consequence, g° is robust to this deviation.

f Let gj; = 1. Let us consider that node ¢ deviates by forming an additional link towards herself.
From Lemma 1, we know that if p; > 0, for any p < p, agent ¢ will not have incentives to
change her amount of in-degree links by definition of g°. So let us consider that pu, = 0. We
claim that the marginal payoff obtained from this deviation is negative for a sufficiently low
value of p, and therefore, network ¢® is also robust to such a deviation when p is sufficiently

low. The marginal payoff obtained by ¢ would be:

1 c
- ,+1[ I _1
i ZlENj[LZ 2

AL meWﬂ+J§ﬂmn

1+

c 1
Sl b )
1i Y e, ﬁl ’

After some simple algebra, we see that AIL; > 0 if and only if:

1
1+¢ ZleNj W 1
(ZleNj ﬁl o %)(ZleNj ;%)

From the definition of g° we know that h; < h;. Repeating the same arguments as before we

f(hi) > cf(hi + hyj)

(xi)

1
L1

. 1+ Ylen, O
conclude that lim,_,,~—2 i
Por Creny = 3) Cien; 7;)

know that cf(h; + h;) > f(h;) for f(-) linear or convex, h; < h; and ¢ > 4. Following the
definition of limit, we can say that for any £ > 0, there always exists a p” (p"" < psy) such that
|1te Yien; u !

P Crem, & D Cren, )

any pair (h;, h;) we can always find a sufficiently low value of p (say p"’) such that condition

= 1. On the other hand, from Lemma 2 we

— 1] < g, Vp < p". Then, for any h vector, and in particular for

(xi) is hold for any p < p'”’, when f(-) is linear or convex. In this case agent ¢ will not have
incentives to deviate; so ¢g° is robust to this deviation.

27



Defining py as min(p’, p”, p”"") the claim of the proposition is proved. m
Proof of Proposition 6. Let us divide the proof in two steps. First, we want to show that in
g° if we substitute the link g;; by another one, say g;i, such that h; > hy, the aggregate payoff will
decrease when p is small enough. Given g¢°, p, = 1 and ), N, #i =n,, Vr € N. Following the
definition of ¢°, if n, > 0 then n,. can take one of these two possible values, n, = orn, =n—1. In
the proof of lemma 1 we show that:
RSP bl S L
P P P

Let us assume the less favorable case (the one in which this marginal aggregate payoff would be
maximum) in which agent j has ﬂ <D e N < q+1 + 1 and o < 1 even after receiving the

additional link. In such a case:

2
A=l 3 ef (ko) + i f () + T ef (s )

iEN leN;\{i,5}
1 1
[ﬁ[ D ef(hu+hy)+g5f(hy)] + ST Cf(h + hj)l
LEN; w 1eN;\{j} leN; p
After some simple algebra A7, II; > 0 if and only if:
/’ZleNj ™ leEN]
(=2 =00 Y ef (it hy)+ g5 (hy)] > 20ef (hy + hy) = —=—=L1cf (hi + )]
b EN;\{i} tta
Since £ < L <oy, PRI B ¢ [y 14-£). Th that li PRty
nce ZleN < + Trq el,1+ 1+q). en we can say that lim, .o—— 1 =

1. leen that h; > hk, we can say that 3p’ such that the RHS will be higher than certain & (> 0)
a1

for any p < p’. On the other hand, lz’mpﬂo(iﬁ\;ﬂ — 1) = 0. In consequence, for the previous

g >0, 3p” such that the LHS will be lower than € for any p < p”. Then, we can always find a value

of p (say p"’) such that the last inequality will not hold for any h and for any p < p”’.
Second, we want to show that in g° if we substitute the link g;; by another one, say g;;, such
that h; < hy, the aggregate payoff will increase when p is small enough. Let us assume the less

favorable case (the one in which this marginal aggregate payoff would be minimum) in which agent

Jjhas £= —1< 37y —<g—and0k>1 In such a case:
1
Azﬂz—i(z cf (b + hi) + gre f (hi) + cf (hi + hy)) f(hz'+hk-)
iEN ZlENk Wy IEN;, ZZGNK l‘z
1
+ % S efthi+hy) —=—(> cf(hu+he) + girf(h))
qlENj\i ZleNk H lEN,
__P , N__ P ,
T g/ it hs) = lz cf (hi + hy)
EN;
After some simple algebra A", II; > 0 if and only if:
1 P ien, )
(D ef (it he) + guf () < 2ef (hi + i) = —=— e[ (hi + hy))
ZIGN;C #_L lEN 1+q
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L_;’_l
Since o, > 1, we can say that ngr—l < ZleNk ﬁl < 9;—1 +1. Then PEieny ) el++£ 1+—2L).

1+q 1+q’ 1+q
POhem 5t g ince ;< h hat 3p" such that the RHS
Ttg = 1. Since h; < hg, we can say that Jp'” such that the RH

will be higher than a certain ¢ > 0 for any p < p®. On the other hand, lz'mp_,OZ;L = 0.
LENE ny

In consequence, lim,—.q

Then,for the previous ¢ > 0, Jp” such that the LHS will be lower than ¢ for any p < p¥. Then,
we can always find a value of p (say p*?) such that the last inequality will hold for any h and any
p < pvi'

Defining p* as min(p", p*?) the statement of Proposition 6 is proved. m
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